Bisimut type formulae for differential forms
نویسندگان
چکیده
منابع مشابه
Generalised Clark-ocone Formulae for Differential Forms
We generalise the Clark-Ocone formula for functions to give analogous representations for differential forms on the classical Wiener space. Such formulae provide explicit expressions for closed and co-closed differential forms and, as a by-product, a new proof of the triviality of the L de Rham cohomology groups on the Wiener space, alternative to Shigekawa’s approach [15] and the chaos-theoret...
متن کاملDimension formulae for vector valued automorphic forms
More general results, including arbitrary Fuchsian groups, can be found in the paper [Bo2] of Borcherds, Sect. 7. Most of them have been proved by the Selberg trace formula, see [Iv] and also [Fi]. The Selberg trace formula in its standard form causes the restriction that the weight is > 2. Borcherds mentions that “with a bit more care this also works for weight 2”. As we mentioned, this bit mo...
متن کاملPseudo-differential operators for embedding formulae
A new method is proposed for deriving embedding formulae in 2-D diffraction problems. In contrast to the approach developed in [7], which is based on a differential operator, here a pseudo-differential, i.e., a non-local operator is applied to the wave field. Using this non-local operator a new embedding formula is derived for scattering by a single wedge. The formula has uniform structure for ...
متن کاملPoincaré-type Inequality for Variable Exponent Spaces of Differential Forms
We prove both local and global Poincaré inequalities with the variable exponent for differential forms in the John domains and s L -averaging domains, which can be considered as generalizations of the existing versions of Poincaré inequalities.
متن کاملNovikov Type Inequalities for Differential Forms with Non-isolated Zeros
We generalize the Novikov inequalities for 1-forms in two different directions: first, we allow non-isolated critical points (assuming that they are nondegenerate in the sense of R.Bott), and, secondly, we strengthen the inequalities by means of twisting by an arbitrary flat bundle. The proof uses Bismut’s modification of the Witten deformation of the de Rham complex; it is based on an explicit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
سال: 1998
ISSN: 0764-4442
DOI: 10.1016/s0764-4442(98)80108-0